
Debugging
Press Play: Interactive Device Design | Aug 01, 2012

Debugging
Advice & Philosophy

Image from flickr: reuben

Debugging is an
inevitable part of the
design process.

It ALWAYS takes a
d i s p r o p o r t i o n a t e
amount of time.

Plan accordingly.

Debugging a Problem
Check Power & Ground

Image from flickr: leprechaun947

Don’t assume that
you connected them
right earlier.

Use your multimeter
or oscilloscope.

Debugging a Problem
Do a Quick Route-Trace

Image from flickr: deadhacker

Make sure that the
voltages along each
path make sense.

Double check pin-
outs and other such
problems against the
datasheets.

Debugging a Problem
Divide & Conquer

Image from technochakra.com

Can you establish whether
the problem is occurring
in software or hardware?

In the first half of the
circuit or the second?

In one particular function
or another?

Debugging a Problem
Get a Fresh Perspective

Image from codinghorror.typepad.com

Get up and take a walk.

Have someone else look
at the problem with you.

Work on another part of
the problem for a while.

Look online and see if
anyone else has had the
same problem!

Image from moderndesignblog.com

Design for Debug
Yes, You Can Do This!

One of the secrets of
debugging is not to write
too many bugs in the first
place!

Here’s some tips for how.

Design for Debug
Actually Design Your System

Image from fritzing.org

If you just throw stuff together, it’ll be a miracle if it really works.

Design for Debug
Actually Design Your System

Image from fritzing.org

Take the time to draw
sketches and schematics,
both for hardware and
software.

Move from high-level to
low-level in your design.

Write pseudo-code first!

Design for Debug
Make One Change at a Time

Image from sebastian bergmann

...And make sure it works!
Keep your tests around.

In computer science, this
is known as unit testing.

This makes it easier to
revert to a “known good”
system and to divide-and-
conquer later.

Design for Debug
The Early Bird Gets the Bug

Image from www.alleba.com/blog/

Everyone cuts corners
and has difficulty seeing
clearly when the dead-
line approaches.

Starting early gives you
time to work in a calmer
and cleaner manner.

http://www.alleba.com/blog/
http://www.alleba.com/blog/

Design for Debug
Work Within a Broader Community

Image from www.allega.com/blog/

Picking hardware and
platforms which are
common (and better,
open-source) gives you
more resources when
you do hit the wall.

http://www.allega.com/blog/
http://www.allega.com/blog/

Ask an Engineer

Foo & Bar Camps

Open Source Hardware
Resources

http://blog.makezine.com/archive/2010/05/million-dollar-baby-businesses-de.html

Open Source Hardware
Million Dollar Baby

http://blog.makezine.com/archive/2010/05/million-dollar-baby-businesses-de.html
http://blog.makezine.com/archive/2010/05/million-dollar-baby-businesses-de.html

In-Class Debug Exercise
What’s wrong with the circuit and/or program?

Barebones MP3 Player
Press Play: Interactive Device Design | Aug 01, 2012

Barebones Overview
How to Play MP3s?

Storing Song Files
Songs are encoded and stored on microSD (FAT16 filesystem).

Barebones Overview
How to Play MP3s?

Decode on the Microcontroller?
1. Decoding MP3s is processor-intensive, and microcontrollers

are not very powerful.

2. Speakers/headphones expect an analog voltage signal,
and microcontrollers only provide logic high/low.

Barebones Overview
How to Play MP3s?

Enter the Decoder
A hardware decoder decodes MP3s (and other encodings),
and converts the result to an analog signal.

Our decoder (VS1053d) has ADC/DAC, 5.5 Kb SRAM, 8 GPIO
pins, built-in MIDI synthesizer, audio amplifier...

Barebones Overview
How to Play MP3s?

decoder input buffer: 2 kilobytes
32 bytes

microSD card: 4 gigabytes or so

teensy board at 8 mhz

data request (dreq)

Barebones Structure
3 (Initial) Modules

Song
Routines that control setup and playback (a state machine).

ID3Tag
(Attempts to) find song title in ID3 V1 and V2 metadata tags.

Utilities
Initialize microSD, store songs in EEPROM, print debug info.

Barebones Structure
3 (Initial) States

DIR_PLAY MP3_PLAY

PAUSED

Finished Playing Last
Song in the Directory

Finished Playing
the Selected Song

Enter Program

How would you add
a PAUSE button?

To add a new state
just include it in
the enum.

These 3 states are
coded as an enum
of type ‘state’.

Press Pause Button

Press Pause Button

Barebones Modules
‘Song’

void sd_file_open();

void mp3_play();

void dir_play();

Where the player’s functionality (state machine) takes place.

Opens a song file on the microSD card in order to play it.

Shuttles data between microSD card and decoder input buffer.

Setup the IO pins, graphic LCD, state enum, state machine.

Barebones Modules
‘Utilities’

Where most of the microSD file and directory tasks take place.

Initializes microSD card, opens root directory, lists files.

Copies the filenames of song (MP3, WAV) files into EEPROM.

Associates currently playing song with filename in EEPROM.

void sd_card_setup();

void sd_dir_setup();

void map_current_song_to_fn();

Barebones Modules
‘ID3Tag’

ID3 tags are metadata stored as plaintext within an MP3 file.

Each value is in a frame that describes what it is and its size.

The format and location of metadata has changed over time.

Our ID3 tag reader focuses on 2 of these formats: v1 and v2.

void get_title_from_id3tag();

void pause_play() {

}

Extending the Player
Build an ‘Interface’ Module

void skip_backward() {

}

void pause_play() {
 if the current state is DIR_PLAY {
 then set the current state to PAUSED
 }
 else {
 set the current state to DIR_PLAY;
 }
}

void skip_backward() {
 if not already at the first song {

 }
}

void skip_backward() {
 if not already at the first song {
 tell decoder to clear its buffer
 close song’s file in the microSD
 set the prior song to be current
 open the file of the current song
 }
}

void pause_play() {

}

Extending the Player
Build an ‘Interface’ Module

void skip_backward() {

}

void pause_play() {
 if the current state is DIR_PLAY {
 then set the current state to PAUSED
 }
 else {
 set the current state to DIR_PLAY;
 }
}

void pause_play() {
 if (current_state == DIR_PLAY) {
 current_state = PAUSED;
 }
 else {
 current_state = DIR_PLAY;
 }
}

void skip_backward() {
 if not already at the first song {

 }
}

void skip_backward() {
 if not already at the first song {
 tell decoder to clear its buffer
 close song’s file in the microSD
 set the prior song to be current
 open the file of the current song
 }
}

void skip_backward() {
 if (current_song != 0) {
 Mp3.cancel_playback();
 sd_file.close();
 current_song--;
 sd_file_open();
 }
}

Program Execution
Write Non-Blocking Code!

Important Notes:
Other than a few very quick functions, the player uses all
non-blocking code. That is, there are no routines that ‘hold
up’ other routines from operating as usual.

If your program has brief pauses between segments of song
playback, then you’ve likely written blocking code (a ‘for’ or
‘while’ loop that waits for an event is often the cause).

Try using ‘if’ statements or interrupt service routines (ISRs).

Lab #6 Preview
Barebones MP3 Player: Yeah!

First Project Deliverable
A ‘Critical Function’ Prototype

