
Debugging
Press Play: Interactive Device Design | May 2, 2010

Monday, May 2, 2011



In-class Activity
Review MP3 player Verplank diagrams

Monday, May 2, 2011



Monday, May 2, 2011



Debugging
Advice & Philosophy

credit flickr: reuben

Debugging is an 
inevitable part of the 
design process. 

It always takes a 
disproportionate amount 
of time.

Plan accordingly.

Monday, May 2, 2011



credit flickr: leprechaun947

Debugging a problem
Check power and ground

Don’t assume.

Use a multimeter or scope.

Monday, May 2, 2011



Make sure the voltages along 
each path make sense.

Double check the pin-outs 
and other such problems 
against the datasheets.

Debugging a problem
Do a quick route-trace

credit flickr: deadhacker

Monday, May 2, 2011



Can you establish 
whether the problem is 
occurring in software or 
hardware?

In the first half of the 
circuit or the second?

In one function or 
another?

Debugging a problem
Divide and Conquer

credit technochakra.com

Monday, May 2, 2011



Debugging a problem
Get a fresh perspective

credit codinghorror.typepad.com

Get up, take a walk.

Ask someone else to look 
at the problem with you.

Work on another part of 
the problem for awhile.

Look online and see if 
anyone else has had the 
same problem!

Monday, May 2, 2011



Design for debug

One of the secrets of 
debugging is not to write  
too many bugs in the first 
place! 

Here’s some tips for how.

credit moderndesignblog.com

Monday, May 2, 2011



Design for debug
Actually design your system.

If you just throw stuff together, it’s a miracle if it works.

credit fritzing.org

Monday, May 2, 2011



Design for debug
Actually design your system.

Take the time to draw 
sketches and schematics, 
both for hardware and 
software.

Move from high-level to 
low-level in your design.

Write pseudo-code first!

credit fritzing.org

Monday, May 2, 2011



Design for debug
Make one change at a time

...and make sure it 
works! And keep the 
tests around.

In computer science, this 
is known as unit testing.

This makes it easier to 
revert to a “known good” 
system, and to divide-
and-conquer later.

credit garrenblog.blogspot.com

Monday, May 2, 2011



Design for debug
The early bird gets the bug

Everyone cuts corners 
and has difficulty seeing 
clearly when the deadline 
approaches. 

Starting early gives you 
time to work in a calmer 
and cleaner manner.

credit http://www.alleba.com/blog/

Monday, May 2, 2011



Design for debug
Work within a broader community

Picking hardware and 
platforms which are 
common (and better, 
open-source) gives you 
more resources when you 
hit the wall.

credit http://www.alleba.com/blog/

Monday, May 2, 2011



Open Source Hardware

Monday, May 2, 2011



Open Source Hardware
Million dollar baby

Monday, May 2, 2011


