Displays & More

Press Play: Interactive Device Design | April 18, 2011

Electrolytic Capacitor Explosion

Homework Sharing

When are things due?

Homework - Mondays

Labs - Wednesdays

Please bring the products of Lab 2 & 3 to class next week.

Interacting with Interactive Devices

some sketches

Interacting with Interactive Devices some sketches

Interacting with Interactive Devices some sketches

Interacting with Interactive Devices some sketches

inches inches

Displays Variations on LEDs

Displays Variations on LEDs

Displays Variations on LEDs

Displays Character displays

- Variations:
 - dimensions
 - # columns and rows
 - Colors
 - Voltages
 - Backlight
 - ☐ HD44780 compatibility
 - Control interfaces (parallel v. serial)

Displays Graphical displays

Variations:

- dimensions
- pixel width & height
- ☐ LCD v. OLED
- Voltages
- Backlight
- Color
- Control interfaces

Voltage Regulation

Why would we want to regulate voltage?

The 3-Axis Accelerometer sensor will operate between 2.2 and 6 volts. Because the MMA7361 chip only will deal with 3.6 volts maximum, the sensor is equipped with a low-dropout regulator so the sensor will work, out of the box, with an Arduino or other 5 volt microcontroller. At 5 volts the sensor draws around 50 uA with the shunt off and 100 uA with the shunt on. The current draw at 3.3 V is 150 / 200 uA respectively.

Voltage Regulation

How to get the voltage you want

- Check:
 - Input/Output voltages (LDO)
 - Current rating
 - Package
- ☐ Here, classic 7805 +5V linear regulator
 - The regulating device is made to act like a variable resistor, continuously adjusting a voltage divider network to maintain a constant output

Voltage Regulation How to get the voltage you want

KIA7805AP/API ELECTRICAL CHARACTERISTICS (V_{IN}=10V, I_{OUT}=500mA, 0 $\texttt{C} \leq T_{j} \leq 125 \,\texttt{C}$)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	Tj=25℃,	I _{OUT} =100mA	4.8	5.0	5.2	V
Input Regulation	Reg line	1	T _j =25℃	$7.0V \leq V_{IN} \leq 25V$	-	3	100	mV
				$8.0V \leq V_{IN} \leq 12V$	-	1	50	
Load Regulation	Reg load	1	T _j =25℃	$5mA \le I_{OUT} \le 1.4A$	-	15	100	mV
				250mA≤I _{OUT} ≤750mA	-	5	50	
Output Voltage	Vout	1	$7.0V \le V_{IN} \le 20V$ $5.0mA \le I_{OUT} \le 1.0A$, $Po \le 15W$		4.75	-	5.25	V
Quiescent Current	I_{B}	1	T _i =25℃, I _{OUT} =5mA		-	4.2	8.0	mA
Quiescent Current Change	ΔI_{B}	1	$7.0V\!\leqq\!V_{\rm I\!N}\!\leqq\!25V$		-	-	1.3	mA
Output Noise Voltage	V _{NO}	1	Ta=25℃, 10Hz≤f≤100kHz I _{OUT} =50mA		-	50	-	μV_{rms}

Voltage Regulation How to get the voltage you want

LM1117-3.3V 800mA Low-Drop Out (LD0) Linear Regulator

Also available in 1.8V, 2.5V, 2.85V, 3.3V, 5V and Adjustable versions

Voltage Level Shifting Why would you want to shift the voltage?

- Why are there different voltages anyway?
- What can go wrong when connecting 3.3 V and 5V devices?

Voltage Level Shifting

Why would you want to shift the voltage?

- Why are there different voltages anyway?
- What can go wrong when connecting 3.3 V and 5V devices?

Inline resistor method

Voltage Level Shifting

Why would you want to shift the voltage?

- Why are there different voltages anyway?
- What can go wrong when connecting 3.3 V and 5V devices?

Reverse diode method

Voltage Level Shifting

Why would you want to shift the voltage?

- Why are there different voltages anyway?
- What can go wrong when connecting 3.3 V and 5V devices?

MOSFET (metal oxide semiconductor field effect transistor) method

Voltage Level Shifting Why would you want to shift the voltage?

- Why are there different voltages anyway?
- What can go wrong when connecting 3.3 V and 5V devices?

Zener diode method

http://itp.nyu.edu/physcomp/sensors/Reports/MMA7260Q

Where do we get cool sensors, displays and actuators?

Fry's (Palo Alto)

Radio Shack (everywhere)

HSC / Halted (electronic surplus)

Jameco Electronics (San Carlos)

?Arrow Electronics (Santa Clara)

Digikey (online)

McMaster Carr (online, for mechanical)

Sparkfun (online, hobbyist)

Acroname (online, robotics)

Lab 4 Preview: Data Logger

Sound! Lights! Acceleration! Gesture!

Using the serial monitor

Writing to the EEPROM