Microcontrollers

Press Play: Interactive Device Design | June 30, 2011

Basic Sensor Circuit

Resistors | Voltage Divider | Sensor Circuits

026 —II }—
05w — [[—

aluminium fins

Image from www.doctronics.co.uk/images/res18.gif

http://www.doctronics.co.uk/images/res18.gif
http://www.doctronics.co.uk/images/res18.gif

READING RESISTANCE VALUES
!

. - .
1st Yalue Tolerance

2nd Yalue Multipher

Example: 4 7 x100 -5%
4700€2-5%

COLOR VALUE MULTIPUER TOLERANCE
Black 0 I
Brown 10 -1%
Red 100 -2%
Orange 1K

Yellow 10K
Green 100K -.5%
Blue M -.25%
Violet 10M - 1%
Gray 100M 05%
White 1000M
Gold : 1110 -5%
Silver - 1/100 10%
None - . -20%

Resistors in series combine as their sum

Rt=R1 + R2
Rt=50+50=100

Resistors in parallel combine as a ratio

Riotal
250

For Parallel Circuiis:
Riotal = (R1 * R2) / (R1 + R2)

A Voltage Divider Circuit

R2

" R1+R2

X Vin

A Potentiometer Circuit

A Flex Sensor Circuit

‘,\> /7.7
Flex Sensor‘(’
I,)

/

Lt ADC

Your Lab Kit Sensors

Micro-Controllers Are
Very Small Computers

Keyboard
Mouse
Graphic Fad
Modem
Metwaork

Long-term: .

Floppy
Hard Drive
CO-RON

v

Processor

*

Control

| Shortterm:
i FAM
i Graphic RAM

i Monitor
i Printer
i Moderm
L Metwork

Operating System
Application Program

Microcontroller Architecture
Clock | Program Memory | Data Memory | Registers | Code

Physical Hardware:

)
=

O wWwWooO~NoOoOubs wNn = o O

(interior)

AREF

(interior)

24

PWM
PWM INTO

PWM
PWM

INT1

RX INT2

TX INT3
PWM
PWM

PWM
Al0 (LEDon11)

(-

Physical Hardware:

Physical Hardware:

Teensy

ATMEGA32U4

ADCO PFO

ADC1 PF1

ADC4 PF4

ADCS PF5

ADCE PF6

ADC7 PF7

OCl1lE ADC13 PBG
OClA ADC12 PBS
ADCll1l PE4
TOOC4D ADC10
T10C4D ADCS

ICP3 OC4A PC7

OC3A OC4A PC6

PD4 ICP ADCS INT3TXD PD3
RESET INT2 RXD PD2
INT1 SDA PD1

OCOB INTO SCL PDO

PD5SXCK CTS OCOA OC1CRTSPB7
PEG AINO INT6& MISO PE3
AREF MOSI PB2
PE2 HWE SCLK PE1
SS PEBO

-|—{-|-

|||v—m}

B —|--
-

Bits and Bytes:

1 byte = 8 bits, 256 unique values for each byte

All the information in the microcontroller is stored in

byte-size chunks; we represent each byte of information
as a two-digit hexadecimal number.

11110011 in binary = 243 in decimel = F3 in hexadecimal
b11110011 = 0xF3

Memory addresses are hex, as well, but preceded with §$,
e.g. $03DF.

Program Memory:

Program Memory

Application Flash Section

Boot Flash Section

0x7FFF (32KBytes)

Data Memory:

Value in Memory
(hex) (decimal)

$0000 Ox9A 154

$0001

$0002

$O07FD

$07FE

$07FF

Address

10 Registers:

PORT B: (PB7-PB0) 8-bit bi-directional I0
PORT C: (PC 7, 6) 8-bit bi-directional IO
PORT D: (PD7-0) 8-bit bi-directional I0

PORT F: (PF7-4, PF1, PFO): analog inputs to A/D
converter (can be used at 8-bit bi-directional I0)

Figure 2-1. Block Diagram

Watchaog debugWIRE
Timar Suparvision

1 POR / BOD & Y

Watchaog R .

—. RESE LOGC

4

Oscllaior
Choums /
Chock
GConoraion

L

imMomal
Bandgap

I

v 3

PORT D (&)

4

Data Direction Registers (DDR):

Since the I0 pins are configurable to be either input or
output, the controller needs some place to store the
directionality of each bit.

These are stored in the Data Direction Registers. Like all
the other registers, the DDRs have 1'sand 0's, butits 1's
and 0's indicate whether the corresponding port pin is
an input (0) or output (1).

Port Features:

Analog to Digital Conversion
Pulse Width Modulation
Timers & Counters

External Interrupts

Serial Peripheral Interface

RX/TX

Arduino Software Environment

IDE | Structure of Arduino Programs | Flashing Programs

® @ O E R &

Blink <

Sketch:

(13, OUTPUT);

O 1
{13, HIGH);
(1088);
(13, LOW);
(1088);

Sketch:
/>i<
Blink

Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.
*/

void setup() {
// initialize the digital pin as an output.

// Pin |3 has an LED connected on most Arduino boards:
/[Teensy 2.0 has the LED on pin | I.

/[Teensy++ 2.0 has the LED on pin 6.

pinMode(13, OUTPUT);

}
void loop() {
digitalWrite(13, HIGH); // set the LED on
delay(1000); /I wait for a second
digitalWrite(13, LOW); // set the LED off
delay(1000); // wait for a second
}

What happens when we flash code?

1. Code from libraries (if any) are included (linked).

2. Code is checked for errors (verified).

3. Codeis “cross-compiled” into machine code (a.k.a
machine code or hex code) using avr-gcc.

4. Code is written to the program memory of the AVR

over USB using the Teensy bootloader.

Flash Demonstration

